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An algorithm is envisaged to extract the coupling parameters of the Kardar-Parisi-BKB&y equation

from experimental data. The method hinges on the Fokker-Planck equation combined with a classical least-
square error procedure. It takes properly into account the fluctuations of surface height through a deterministic
equation for space correlations. We apply it to ¢he 1)-dimensional KPZ equation and carefully compare its
results with those obtained by previous investigations. Unlike previous approaches, our method does not
require large sizes and is stable under a modification of sampling time of observations. Shortcomings associ-
ated with standard discretizations of the continuous KPZ equation are also pointed out and finally possible
future perspectives are analyzed.

PACS numbd(s): 64.60.Ht, 05.40-a, 05.70.Ln

[. INTRODUCTION dynamics[6] but has ever since displayed relations with a
variety of physical systems, such as, for instance, bacterial
Inverse techniques have a wide range of applicabilitycolonial growth, immiscible fluids, directed polymers, and
ranging from geophysics to nonlinear time analysis and stasuperconductorf7].
tistics[1]. The common philosophy behind these methods is The Kardar-Parisi-ZhangKPZ) equation[6] was intro-
the extraction of equations of motion starting from succesduced as a coarse-grained mesoscopic description for the
sive experimental time series of some dynamical variable igrowth of a rough surface under the deposition of particles
addition to basic assumptions such as determinism. If a readriven by gravity. The crucial ingredient introduced in the
sonably general form of the equations is guessed either b{PZ equation and not present in the corresponding linear
symmetry arguments or by general considerations, theounterpart, namely, the Edward-WilkinsgEW) equation
“true” parameters are then determined by minimizing a cost{8], is a nonlinear term which takes into account the fact that
function quantifying the distance between experimental obthe growth is normal to the surface. The KPZ equation can
servations and corresponding reconstructed quantities, tHee mapped into various other models. A Cole-Hopf change
latter being implicitly dependent upon the parametersof variables maps it into a directed polymer diffusion equa-
Among such approaches, the least-squares method is thien subject to a random potenti&@], while the identification
most popular one. of the local gradient with a velocity leads to the Burgers
A typical system that can be treated using reconstructioequation for a vorticity-free velocity fielgL0]. Furthermore,
techniques is the case where@rservational noisé super- it is believed that the KPZ equation has the same large-scale
imposed onto a standactkterministicevolution. In this case behavior as the Kuramoto-Sivashinsky equation in11di-
the system is expected to evolve under the action of thenensiong11], while in higher dimensionality the situation is
deterministic system and stochasticity comes only from oumuch less cleaf12]. Nonetheless, in spite of the gigantic
measurement apparatus. The particular case where the dgffort devoted to the KPZ equation in the past decade, a
namics underlying the system is chaotic has also receivedomplete understanding of its properties is still lacking.
considerable attention due to its widespread occurrence in The aim of the present paper is to introduce an inverse
natural system§2], and the importance of treating the pres- approach to the KPZ equation. A previous attempt due to
ence of the noise with due care has already been emphasizedm and Sanddirl3] was based on the standard least-squares
[3]. (LS) reconstruction method. These authors used this ap-
The alternative possibility ofdynamical noiseoccurs proach directly on numerically simulated experimental sur-
whenever the noise is a built-in component of the equationgaces without a preventive test of the performance of the
of motion. This is a far more difficult problem since one hasmethod itself. Lam and ShifiL4] subsequently showed that
to deal with stochastic rather than deterministic equationsthe standard discretization used i8] was not adequate. We
An important such case, which is widespread in nature, is thehall argue below that, even with the improvements given in
Langevin dynamics where variables evolve subject both t¢14], the classical identification procedure devised in Ref.
dissipative generalized forces and to a fluctuating [gErtin ~ [13] is not properly suited for Langevin dynamics since it is
this last instance, the presence of dynamical noise can drabased on deterministic equation ideas. By an explicit compu-
tically modify the dynamics and hence hampers the effitation using the LS technique applied to @+1)-
ciency of the usual reconstruction techniques based on detedimensional KPZ equation, we shall review their method and
ministic idead5]. point out what we consider its main deficiencies.
In our work, we focus on a particular class of Langevin  We then go on to introduce a different approach based on
dynamics that has its origin in a seminal paper on interfacéhe Fokker-Planck equatioifFPE) associated with each
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Langevin equatiofl5,4]. The advantage of this viewpoint is linear (9,h)? terms, respectively. We note that the exact
that one can construdeterministicrelations among correla- meaning of “proper discretization” has been the object of
tion functions which, however, still carry information regard- some investigatiof16—19.

ing the fluctuating nature of the original quantities. Those In all practical applications, a further temporal discretiza-
equations can then be easily analyzed within a least-squarésn [15,2Q is also performed on Ed5):

framework as in the LS method.

The paper is organized as follows. In Sec. Il, the KPZ
equation is briefly recalled along with its numerical real
space approximations in+1l dimensions, while the LS ap-
proach is reviewed in Sec. lll. Section IV contains the basic
equations of our modified method, which is then applied in i ) ) ,
Sec. V. Numerical results are then given in Sec. VI and som&herer; is a Gaussian random generator of unit variance and
concluding remarks are provided in Sec. VII. More technicaldt the discretization time step. _
points are finally confined in the Appendixes. Appendix A [N d=1+1 itis known that the steady state solutiBph]
shows why the least-square method fails for sufficientlyr the probability distribution of the heights in the KPZ
large noise amplitudes and Appendix B presents some resylfguation is _|dent_|ca_l to _the EW stationary distribution due to
concerning renormalized interfaces and their correspondinf® fluctuation-dissipation theorefa0]. It has been shown

hi(t+ 8t) = hy(t) + ot| c+ veﬁFr[h(t>]+%fF?[h<t>]

+ 2Deﬁ5tri , (6)

renormalized equations.

II. INTERFACE DYNAMICS

We consider a one-dimensional line of total lengthnd
a surface of heighth(x,t) at positionx and timet. The con-
tinuum (1+1)-dimensional KPZ equation then reads

ah(x,t)=c+ va2h(x,t)+ %[axh(x,t)]2+ n(x,t), (1)

where 7(x,t) is an uncorrelated white noise,

() 7(x' t))=2D8(x—x")3(t—t). ()

The average( ) is taken on different realizations of the
noise. In Egs(1) and(2), c, v, A\, andD are coupling pa-

19,21] that the correct stationary discrete probability,
namely,

N
ba 2 (i—h.w?, @

N =

P[h]=N"texp| —

where N~ is a normalization factor, can be obtained by
taking

Filh]=hi,1+hi_1—2h 8
and
N 2
Filh]= §[(hi+1—hi) +(hjy1—h)(hi—h;_y)

+(h;—h;_)?]. 9

rameterq c is often set to zero because of the invariance of

Eqg. (1) under the rescalingp—h+ct]. For A\=0, Eq. (1)

reduces to the Edward-Wilkinson equati@], which can be

solved exactly.

The standard choicé [ h]=(1/4)(h;,,—hi_1)% on the
other hand, fails to reproduce EJ) and suffers other prob-
lems as wel[18]. A necessaryalbeit not sufficient condi-

In writing Eq. (1) either a regularization in the correlation tion for identification with the continuum counterpart Eij)
given in Eq.(2) (such as, for instance, a spatially correlatedis clearly that the correct steady stéite., independent of)

noise or the introduction of a minimal length scake is

is recovered. For this reason, we shall exploit for our identi-

always tacitly assumed. In the latter case, one is then natdication procedure as well as for the LS spheme Egjsand .
rally led to consider a discretization of the continuum equa{9) hereafter, instead of the standard choice that was used in

tion at a given cutoff length scake In that case(a) the noise

term 5(x,t) is discretized,

D
m(t)= \geim, 3

where 6,(t) is a random noise
(6i(1) 6;(t"))=26; ; 5(t—1"), (4)

with §; ; the Kronecker symbol; angb) Eq. (1) is written for
a discrete variabld;(t) (i=1,... N=L/a) with periodic
boundary conditions

Mt v PN S BN N+ B0, (5

Ae
dt 2

Here veg=rvla?, \eg=Nl/a?, and Des=D/a. F!/[h] and
FMh] are proper discretizations of the Iine@f{h and non-

[13).

Ill. LEAST-SQUARES ERROR MODEL METHOD

Before introducing our method we first review the LS
error method used in Refl13]. We consider experimental
surfaces coarse grained at length scaldescribed by the
interface heighth®t) (i=1, ... N), which are sampled
M times, i.e., at discrete times=t,=kAt (k=1,... M
+1). Note that the sampling timAt is the time interval
between two experimental observations and it is clearly dif-
ferent from the discretization timét of Eq. (6). For surfaces
obtained by numerical simulationst is typically a multiple
of 8t. We note that, in Ref.13], the authors useflt equal to
ot which is a rather particular case.

For the sake of simplicity, we assume here that measure-
ments are free from observational noise. It must be empha-
sized that, in the presence of measurement noise, our method
performsa priori better then the LS scheme since it is based
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on spatial-averaged values, which are less affected by errota the presence of noise, however, it has its main drawback
on local height measurements. in the fact that it approximates time derivatives by finite
Our purpose is to determine the coefficienity, A, andD  differences. If the dynamics is governed by a deterministic
at the given length scakein Eq. (3). Let us first neglect the equation and measurements are performed with a negligible
dynamical noise in Eq(5). We then obtain a standard iden- observational noise, this simply imposes the choice of a sam-
tification problem of the coupling parameters governing apling time much smaller than the characteristic or relaxation
deterministic nonlinear equation which can be cast in thdime of the process.
compact form Lam and Sandel13] assumed that if the sampling time
At is small enough, the above method could be extended to
. N a Langevin equatiofi.e., with dynamical noise The ampli-
Hzazl moFiTh], (10 tude of the noise can then be inferred from Etf) whenJ
is taken at the minimum values of the parameters, that is,
where in the present cage=3 and ,u1=cz, ,u2=veﬁ,3,u3 1
=N\eff, and Egs(8) and (9) are used fo;Th] and F;Th] _ = *
whereasF{[h]=1. D= 2ar@w): 17
Optimal parameters are then determined by minimizing a

cost function7 such as the sum-square difference However, it has already been observed_ in dynamical systems
that even with pure measurement noise the above method

N can cause large errors. This is expected to be the case for
> [h®St 1) —hP®{t, ;)12 (11  dynamical noise as well. Two main reasons for this can be
=1 advocated. First, i\t is too large, the linear approximation

which quantifies the distance between experimental observ 12) which explicitly relates the observed quantities breaks

. . » own. Because of the dynamical noise term, this happens
tions h%{t,) and equivalent reconstructed quantities y bpe

pre i priori for shorter time intervals in a Langevin equation com-
hP"*{t,). The latter quantities are computed from Et0) pared with its deterministic counterpart. Second, even in the

for given parameters and are thus generally implicit func'favorable case in whiclAt is small, such a method is effi-

tions of the parametsrs. However, if the sampling titeis  cjent only if large sizes and small noise amplitudes are used.
small enough, their"[h] are nearly constant between two This is explained in Appendix A, where a simple zero-

measurements and the amplitudé&™{t, ;) can be related dimensional case is explicitly worked out with the method of

M

- 1
T=NM &

to the parameterg, by Lam and Sander.
p
hPred ¢ =NhoP%t,) + At FohoPst,)]. 12 IV. STOCHASTIC APPROACH FOR MODEL
Pt ) =N 0+ AL 2 waFIThT 0] (12 DENTIEICATION
In this case, the cost functiafi{({x}) itself becomes explicit e now turn to our method, which is based on the simple

and quadratic in the parameters. Optimal parameters can th@9servation that all the information present in the Langevin
be evaluated through a simple matrix inversion. Indeed, th€duation(5) is also contained in the corresponding Fokker-

extremal value of7 is inferred from Planck equatior15]:
N 2 N
N d d
. =0. (13 aP[ht]=2 Der—5Plht]= 2 ——(F[h]P[h,t]),
Ha u* i=1 ﬁhl i=1 i
(18
The solution for the optimal parametefg*} is then given
by a matrix equation, where
P v 1 A
pt=> A 1B, (14) Filh]=c+ VeﬁFi[h]+§)\eﬁFi[h] (19
p=1
where we have defined and[22]
1 M N ﬁ
Y] kgl ;1 FeFE, (15) P[h,t]= 134 o(hi—hi(t)) ), (20

M N ob ob where the solutiorh;(t) is associated to a particular noise
B :i >3 h™Ttern) — ™t Fe. (16) configuration; (t).
“ NM &= At b In Eq. (18) the second term on the right-hand side char-
acterizes the deterministic behavior of the system whereas
and where functionsF{* are clearly expressed at the first term contains stochastics effects. We derive a first
hSty), . . . h&PXty). general equation involving the parametend . Using Eq.
This classical least-squares method is an easy and natur@dl8), the time derivative of the ensemble averagé;¢f) can
approach and it works fairly well in the absence of any noiseeasily be shown to be
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U [EEET (21 51 )= 2D g (S, )= (s
dt i i dp(oh;j,t)= eﬁghjzp( i) — thﬂ'( i),

where Dh=TIN dh. If we denote by g(t) (29
=(1N)Zi(hi(t)) the mean height at time averaged over \here the nonlocal termr(sh; ,t) is defined as
the noise, its time derivative can be written after some simple
algebra as ~

0 m(oh;,t)= [ Déh;G;[ sh]P[sh,t]. (30

dg (t) N eff (2) (2)
dt =ct ?[Zgo (H+e(V], (22) The last step is to introduce the Fourier transform of

where we have defined

p(oh;,t), which can be reckoned as a generating function
for all moments of the distribution. Specifically, on defining

1N ~ o :
g7(t)=15 2 (Shi(t)shi (1) (23 pi(a.t)= f ~_daoh;eip(shyb), (3D

=1

in the variablessh;=h;—h;.,. Note that there are onl{  we find a simple equation for the averagég,t) over all
—._1 independenéh; varlabIeNs due to periodic boundary con- gjiag ofb\j(q,t):
ditions and to the fact that,_, 6h;=0.

The above result prompts a convenie_nt change of vari- ap(a,t)=—2Dq?p(q,t) —igm(q,t), (32
ables fromhy, ... hy to 8hy, ...,6hy_;,h=1NZN ,h;, i
followed by an integration oven. Physically, this is related in Which 7(q,t) is the Fourier transform ofr(sh; ,t) aver-
to the fact that our system is infinitely degenerate with re-2ged over all sites. One can then expand (B8) in powers

spect to the average height. Note that the stationary probabiff g and obtain an infinite hierarchiglosure problemin the
ity Eq. (7) is now Gaussian and well defined in the new correlation functions. The first two nontrivial ordd®(q-)

variables shy, .. .,6hy_,. The corresponding probability andO(g®)] are

P[ sh] is the solution of a modified FPE:
5 N—-1 (92

aP[8h,t]=2D¢s >,

=1

P[ sh,t]
96h?

N-1 9
= 2 Gon (GilanIPLaNt])

N—1 2
_2Deffi22 Wp[éh,t], (24

where we have defined
v 1 A 2
Gi_Fi_Fi l_VeffGi +_)\effGi y ( 5)

with
G;/:(Shi+l+5hi,1_25hi (26)

and

)\_E 2 oh2 _ sh. - .—=58h:
Gi—3[5hi—1 ohi 1 —6hi(dhij 1 —6hi_1)].  (27)

dg?(t)
q =4l 0?0901 +4Der (33)
and
dgfe(t)
G =~ 3rel 020+ 208 1))

1
+ 5 Nerl Gbox( D) — 9EA(D)], (34

where we have defined the following higher order correlation
functions:

1 N
g ()= 2 (i ahi (0N m(D), (39

N
1
gfin(D) = 2, (BNi(1)Shi. ()8, (1) Sy n(1)).
(36)
It is worth mentioning that. does not explicitly appear in

Eqg. (33). As one can explicitly check, this is a feature asso-
ciated with the particular discretization E@) and it would

We are now in a position to derive our second basic resulthot have been the case had we used the standard discretiza-

Integrating Eq.(25) over all variables butsay dh;, one
gets, for the single variable probability

p(ahj)zf Dsh;P[sh,t], (28

where the shorthand notatiddsh; =1I1{;;2,dsh; was again
exploited, the following equation:

tion for F[h]. This is clearly related, in turn, to the fact that
the steady state probability distribution EJ) is indepen-
dent of A. We also note that in thél+1)-dimensional case

we are considering, the explicit steady state solution of Eq.
(32) is known, and depends only on a single parambter.

As a consequence, the steady state version of3jcannot

be used here to identify andD. In the (2+1)-dimensional
case, where such a peculiar feature is not present, the station-
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ary solution depends on as well and parameter identifica- tial average height and correlations of the first neighbors.

tion can exploit the steady state analog equation. The numberR of realizations need not be large: if the total
numberN of sites is sufficiently large, the experimental val-
V. PARAMETER IDENTIFICATION ues are rather close to the corresponding theoretical predic-

o _ S tions gM(t), g{?(t), and g{?(t). From these functions
Qur aim is to |mplement an |den.t|f|cat|on progedure sampled every=t,=kAt, the integrals in Eq¢37) and(39)
which could be exploited in rea_l experiments. F_or this rédcan be efficiently evaluated for small sampling tidvé. In
son, we assume that the experimental surface is constltutetgis case, the smooth fUﬂCtiO'ﬁS}(l)]expt, [982)]expt, and

by a finite number of sitedl with lattice spacinga (corre- [9(12)]expt can be approximated on the whole time interval

?ponc_irlng to asize = NI‘T")’ atr.]d:A'tS n;easureAdt QUrlng a flr_1|te [T1,Tq+1] by a standard curve fitting algorithm which gives
IME 1ops EVEry Sampiing imeat. Again, IS a priori as a by-product the time integrals. This method does impose
different from the discretization timét when the data are a constraint on the sampling timt. However, this con-

produceq numericaliynote that in real experiment ISnot  raint is substantially weaker with respect to that imposed
even definefd We shall test the robustness and efficiency ofby the LS method. as we will show below. This is a consid-

the scheme with respect to the sizand sampling time\t. erable advantage of our procedure.

|dentification methods are often based on minimizing a1, remarks are in order here. First one expects the result

cost function defined through dynamical constraints. This isto be independent of the number of sliaesrovided thatg
clearly the case of the least-squares method as explained Ytisfies the following two constraints. On the one hand

Szezc. I”a Hagre V}’f gerlve; Qynafm|caltpon?tra|n:ﬁ using E?Sshould be greater than @ince two parameters are identified
(22) and (33), which contain information from the origina er cost function and on the other hand it should be less

Langevin equation, including mean values and ﬂuctuation%an M=T. /At so thatAT cannot be less than the sam
— lobs -

around mean values. The present identification is thus basep ing time At. Second, the identification ofandD could be

e s SonSiLies & CrU 1T achee by using EA32 rather han £33, We shl see
X P that in our approach the two equations yield virtually identi-

directly based orstochasticequations. Another important

. " . cal results.

feature is that the observed quantities we use in our recon-

struction scheme are dealing with averaged site values.

Hence the fluctuations of all these terms, which derive from VI. RESULTS

stochastic quantities, areducedtypically by a factor (N, In order to test the potentiality of the different identifica-

and self-averagmg IS expeqted to be more effective. tion methods, we produce experimental data by simulating
I.‘Et us-denve the qonsér_a!gtsdwe. use. First, thel tOtT‘.I obserEq_ (5) with a standard Euler time integration algorithm with
vation time Tops IS vide . Into q_ equa SICES  time stepsot=0.01, lattice spacing=1, and parameters
[To.Tol, ... [Tq,Tqeq] With AT=T,. .~ T;. L.et usinte-  _p_1 and\=3. These are the same values used in Ref.
grate Eqs(22) and(33) on each slicd T;  Tj.4]: [14]. The time step is expected to be sufficiently small to
Ag® Nt 1 Tii cause no instability problems and the nonlinear t&rim big
— — =C+— —f di[2g@(t)+g{?(1)], enough to be well inside the KPZ phase. We find it interest-
Tj+1— Ty 6 Tjv1— T T ing to repeat each calculation a few timggpically five) to
37 give an estimate of the error bars to be associated with each
parameter valuéthis was missing in previous work

Agf)z) 1 ij+1
=4v dif g (1) — gt
Ti1—T, effTj+1_Tj T, Lar7 (1) = g5(1)] A. LS method
+4D . (39 Let us compute the parameters using the original LS
method with the spatial and temporal discretization of Eqs.
If the functions and integrals in EqE37) and(38) are com-  (5) and (6). We exploit the same trick used in R¢l.4] in
puted using experimental data, these discrete equations presich a KPZ surface of sizel2is obtained by a magnifica-
vide 2q relations between the parameters to identify. Fromtion of a fully relaxed surface of size where the height is
these constraints, two cost functions are built in a way alrescaled by a factor 2(a=0.5) and linearly interpolated.
ready described in Sec. lll with=2. The corresponding 2 The surface obtained is then relaxed to stationarity before the
X 2 equations then yield and\ from one cost function and next magnification is attempted. However, unlike Hd#]
v andD from the other. where a single surface of site=32 768 was computed, we
We now explain how the functions and integrals in Egs.consider. =512, 1024, 2048, and 4096 and linearly extrapo-
(37) and (38) are obtained experimentally. Starting with the |ate the results to the limlt— . The calculation is repeated
sameinitial surface, e.g., a flat surface, we will grow the for increasing values o§=At/ét in order to display the
surfaceR times. Because of the stochastic nature of the pheerucial weakness of the method as explained before. Figure 1
nomenon, this produceR different observations or realiza- depicts the results for the parameterat finite L. Similar
tions of the same process. Such a procedure, which can hgends are present for and D. The extrapolated values at
performed very easily in real experiments, allows the com{ —« are reported in Table |. The gradual decrease in the
putation, at sampling times=t,=kAt (k=1,... M+1), precision of the reconstructed parameters is apparent and it
of [0 ]expts [958 expr: @NA[ 917 Texr Indeed, these quanti- shows the loss of accuracy of the LS methodvasncreases,
ties are the averages ovRrdifferent realizations of the spa- as previously noted.
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TABLE II. Extrapolated values of coupling parameterg»),
N(), andD(<0) as a function of = AT/At (see textas computed
from the original LS methodat steady staje

*s=10
4 s=20

AT/At

v(*)

A()

D(«)

10X o @ . . .

1
5
10
20
50

0.999+-0.003
0.996+0.002
0.917-0.002
0.855-0.002
0.65@-0.001

2.986-0.005
2.817%0.004
2.6270.006
2.308:0.006
1.558 0.006

1.006:0.001
0.9280.001
0.8530.001
0.7570.001
0.6530.002

much less time consuming. Again the results are obtained for
L=512, 1024, 2048, and 4096 and linearly extrapolated to
L—oo. For a comparison with the previous calculation, the
outcomes for the parameterat different sized. are plotted
in Fig. 2 for increasing values of the ratse= At/ 6t, and the
corresponding extrapolated values are reported in Table IlI.
One can see that the parameter values are rather insensitive
to the changing the ratis=At/é8t, as expected. Next we
checked the performance of our method with respect to in-
crease of the ratio=AT/At. This is reported in Table IV.
As expected, our method outperforms the LS one in all situ-
ations.
1/L Since the LS method could in principle be carried out in
transient rather than in steady state conditions, one might
FIG. 1. The coupling parameter for increasing lattice sizels wonder how it would perform in this case. To this end we
=512, 1024, 2048, 4096, in the original steady state LS methodrecomputed the parameters using the LS method under these
All guantities are in dimensionless form. Error bars are of the order
of the symbol sizes and are consequently not displayed. Different
curves refer to increasing values of the radio At/ St. The cross
(X) indicates the exact value of the parameterl.

05 | i

* * * *
A A A A

0.0
0.000

0.001 0.002 0.003

1.5 T T T

®s=1
g5
+s=10
We also considered the LS method when the recon- 45=20
structed quantities are computed at time intervglsthat are
multiples of the sampling timat. In fact, this test was also
carried out by the authors of Rdfl14] (in their notationr

=AT andAt= 6t) and it will constitute a further source of
comparison with our alternative stochastic metliede be-
low). Even in this case there is a decrease in the performanc
of the procedure as the ratic= AT/At increases, consistent
with the results of Ref{14]. The corresponding extrapolated ~

values are reported in Table II.

10X 2 8 ' % 1

B. Stochastic approach 05 I J

For a more convenient comparison with the LS method,
we use the same sizes and statistfoge different configu-
rations for each si2e Our calculations are carried out in the
transientrather than in thesteadystate and are therefore

TABLE I. Extrapolated values of coupling parameterg»),
(), andD(«) as a function o= At/ét (see text as computed
from the original LS methodat steady staje

0.002 0.002 0.003

/L

0.0 ! !
0.000 0.001 0.001 0.003

At/ 6t

v(*)

A(*)

D()

1
5
10
20

0.999+0.003
0.194+0.004
0.103£0.004
0.049-0.002

2.986:0.005
0.595:0.015
0.3190.008
0.13%0.004

1.006:0.001
0.206:0.001
0.106:0.001
0.056:0.001

FIG. 2. The coupling parameter for increasing lattice sizels
=512, 1024, 2048, 4096, as obtained from our reconstruction
method. Error bars are of the order of the symbol sizes and are
consequently not displayed. Different curves refer to increasing val-
ues of the ratice= At/ t. The cross k) indicates the exact value
of the parametep=1.
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TABLE lll. Extrapolated values of coupling parameters<), )\ =3.27+0.05, andD =0.88+0.03. Higher values ob re-

)\t(oo)h' a?dD(oo) asha_futnhctu?n Oszft/tatt as computed from our gt jn hoorer and poorer agreement with the expected values
stochastic approach in fhe fransient state. even with larger lattice sizes. The same feature is also
present in the original LS procedure as we explicitly

At/ot V() M) D(=) checked. In fact, this is a general deficiency of the real space
1 1.009+0.002 3.04%0.016 1.026:0.001 discretization as explained in Appendix B: the finite size
5 1.008+0.007 3.01%0.006 1.0030.007 difference has lost some renormalizability property of the
10 1.035-0.011  2.9930.010  1.0180.011 original KPZ continuum equation.
20 0.9970.020 3.00%0.005 0.97&0.010

VII. CONCLUSIONS
conditions and found that the predicted values are far off
with respect to the exact ones. For instance,Lfer4096 a
typical run yieldsv~0.36, A~0.68, andD~0.005, to be

In this paper, we discuss a method for extracting the cou-
pling parameters from a nonlinear Langevin equation starting
. . . : from experimental surfaces representing successive snap-
compared with a typical result obtained with our method shots of the system. We apply this scheme to the KPZ equa-

~0.99,\~2.98, andD~1.01. N . . .
As a final cross-check of our method, we recomputed théIon in 111 dimensions(although it could be extended to

parameters in the same situation as before but using32y. any dimensionsand compare it with the previous approach

of Ref.[13], finding the following differences. First of all it
{3;?%2;?3;55;33) to extractv and D, and found nearly does not require large sizes and it is well suited for a tran-

sient state. This is expected to be a considerable advantage,
notably in numerical work, since the typical time required to
reach a steady state increases @svherez is the dynamical

The application of this method to experimental surfacesxponen{3/2 in the(1+1)-dimensional KPZ cageWe have
assumes that the system is described by a KPZ-like dynanexplicitly shown how the LS method, which works rather
ics. In this case, besides being able to address the issue Well in the aforementioned conditions, fails to provide sen-
whether or not they belong to the KPZ universality class, oneible answers otherwise. Most important, however, is the fact
would be able to provide a numerical estimates of the couthat our approach is stable under changes of the sampling
pling parameters, which are usually overlooked in studiegime, unlike the LS method, which is not. We stress the
focusing only on the universality class. importance of this feature since in typical experimental situ-

Following Lam and Sanddn 3], we produce an interface ations the sampling time is an externally tuned parameter
based on the KPZ discretized model E), which is then that has nothing to do with the evolution time of the system.
smoothed by introducing th@liscret¢ Fourier transform of We have discussed the reasons why this is so and provide an
the heights intuitive heuristic argument showing why the LS scheme is
not expected to work under these more realistic conditions.
- B g, Finally, we implemented a coarse-graining procedure in or-
hqn(t)—a;l e nfih(t). (39 der to be able to apply our method to experimentally gener-
ated profiles. We showed that the agreement with the ex-
. _ pected values is much poorer in the present case, and we
A coarse-graining surface at level;=ba can then be .
achieved by simplying setting to zero all wavelength compo-further argued_ thaany real space based approach is doomed

- i _ to run into this problem, the reason being that these ap-

nentsh, (t) with g=Ns=L/as and transforming back to real proaches do not have a correct renormalization behavior un-
space. The smoothed surface obtained is then be assumedder coarse graining, as explained in Appendix B. We have
be governed by a KPZ equatigrenormalizability property  recently devised an alternative approach based on a Fourier-
This new KPZ dynamics can then be reconstructed alongased scheme, which avoids discretization problems. The re-
lines similar to those described above before a further timgults of this will be the subject of a forthcoming publication.
step is carried out on the original surface.

With b=2, AT/At=1, and sizes up tb =8192 averaged

C. Coarse graining and KPZ real discretization

N

over five configurations as before, we find=1.09+0.04, ACKNOWLEDGMENTS
TABLE IV. Extrapolated values of coupling parameter(s), This work was supported by a joint CNR-CNRS .exchz.ange
M(=), andD () as a function of = AT/At as computed from our Program No. 5274. One of UA.G.) acknowledges financial
stochastic approach in the transient state. support by MURST and INFM.
AT/At () A() D()
APPENDIX A: A SIMPLE SOLVABLE EXAMPLE
1 1.009£0.002 3.047%0.016 1.026:0.001
5 1.003+0.003 3.00%0.010 1.0570.003 This Appendix shows, on a simple and solvable example
10 1.003-0.001 3.03@:0.007 1.0230.001 which is a zero-dimensional analog of Efl), that the
20 0.998- 0.002 3.014 0.009 1.016-0.001 method of least squares can be hampered by the presence of
50 0.99F 0.003 3.017 0.006 1.016-0.003 dynamical noise. Let us assume that the scalar variéie

is governed by the following Langevin equation:
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X
Gt = BOO+uGX)+ (1),

(A1)
whereB and G are prescribed functions, ang(t) is an un-
correlated white noise

(n(t)n(t"))=2Ds(t—t").

For simplicity, we assume th&) measurement noise is neg-
ligible, (b) the observed time serie$®®{t,) with t,=kAt

(k=1,...
tem (A1) with the valueu=0. We ask whether the least-

(A2)

squares method is capable of identifying the correct coupling

parametem=0.

INTERFACE DYNAMICS FROM EXPERIMENTAL DATA

M +1) has been produced by the dynamical sys-
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M

1
o

G2(XPty))~(G?), (A9)

the average being over the noige The second sum can be
separated into two contributions,

M

1
v 2 [t G ty)]

M

E r(t)[G(X°P(ty))— <G>J+u 2 r(ty),

(A10)

On the one hand, the least-squares method first assumegere using the central limit theore(@LT) [4] we have that
that the data are produced by the deterministic counterpart of

Eq. (A1) with an unkown parameter. In discrete times, this
yields a “predicted” value given by

XPreqt, 1) =X t,) + At[ B(XPt, )+ wG(X°Pty))].
(A3)

On the other hand, the “observed” value is given, if the
sampling time is small enough, by the discrete time counter=

part of Eq.(Al) with ©=0:

= X°PK(t)) + AtB(X°PS(t,))+r (1) V2DAL,
(Ad)

X tye+ 1)

wherer (t,) is a Gaussian random generator of unit variance.

Using both experimental observatioX8{t,) and recon-
structed quantitiesxP®{t,), a cost function can be con-
structed:

1 M
=3 2 X - X te ) (A9)

Using Egs(A3) and(A4), the cost function is readily rewrit-
ten as

M
- % gl [AtuG (X)) —r(t) V2DAL]%  (A6)

The minimum value of7 then satisfies the extremality con-
dition
N

0, A7
o, (A7)

which provides the value

*

/‘l’:

(A8)

M

\F (1M) 2 r(t) G(X*ty)

E .
<1/M>k21 G2(X*t))

Let us estimate the two sums appearing in &8). Be-

cause of self-averaging, the denominator can clearly be re-

written as

(tk)~<\/——>

wherer ; is a random variable of unit variance. In E410),

each term of the first sum of the right-hand sidks) is a
random variable which is a product of two independent ran-
dom variables of zero mean and variance, respectively equal
to 1 ando=(G?)—(G)?2. A similar argument based on the
CLT applies to the evaluation of the first term of the rhs
since it is again a sum ofl random variables with zero
average, which implies that

(A11)

G)
P

M

1 2, (IGO0 ~(G))= =

wherer, is a random variable of unit variance. Instead of the
true value one then finds

V2D max o (G))
YMAt  (G?

With nonvanishing amplitudeS, the noise hence causes er-
rors for smallAt unless large statistics are considered.

(A12)

* =

/_LN

(A13)

APPENDIX B: NONRENORMALIZABILITY
OF REAL SPACE DISCRETIZATIONS

Let us consider a one-dimensional surface defined on a
lattice of lengthL=Na (a being the lattice spacing and
being the total number of sitgswhich is identified by
h., ... hy at positionsx;=a, ... Xxy=Na and has peri-
odic boundary conditions. If we assume a KPZ dynamics,
then the equation of motion is given by E&) and its sta-
tionary state by Eq(7). Let us introduce thédiscrete Fou-

rier transformhy, so that

1 N/2
hi(t)= T n:ZN/Z e'Insih, (1), (B1)
and conversely
N
ﬁqn(t)zaz,l e~ idnXih(t). (B2)
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By using the relation
N

-21 ei(qnfqm)xi:N5n17m’ (BS)
i=

it is easy to show that the correct corresponding relation o
Eq. (7) for the stationary distribution is

N/2
14

21K |2
2 DL n:ZN/Z Qn|hqn| ' (B4)

ﬁa[ﬁ]=N1exp(

In Eqg. (B4) the continuum limita— 0 is simply achieved by
letting N— oo,

We now recall that the proper variables to be used in thisl’;,‘al [A]=Ntex
S S

context are thesh;=h;—h;,,;, whose Fourier transform
sh,_are related to the Fourier transforilg of the heights
by

5ﬁqn: ﬁqn(l—ei%a). (B5)
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In the continuum limita— 0 one can explicitly check that
Eq. (B7) is equivalent to Eq(B4) by expanding the term
€'9? in powers ofa and keeping the lowest nonvanishing
orderO(a). Nevertheless, EqB7) leads to problems when
pne tries to coarse-grain the surface. Indeed, suppose we now
perform a smoothing of the lattice of a factorto obtain a

new lattice constards=ba and a decreased number of sites
Ns=N/b. This amounts to setting to zero all modes frbin

to N and thus thecorrect corresponding stationary distribu-
tion is, according to Eq(B7),

1 Ng/2
- = hy (1—e'n®)|2 |
2 DLa? n:ZNSIZ g ( )

(B8)

On the other hand, had we started from the “smoothed”
lattice and constructed the differencéls’=h’—h?, , of the

We can exploit the periodic boundary conditions to extendcoarse-grained heights, we would have found

the N—1 sites toN (bearing in mind, however, that only
—1 are independentind use the the fact that

N/2

N
1 “
— > shi= Shq |2,
a Zl ' La? n=ZN/2 | q”|

to rewrite the probabilityB4) in the alternative form

1 N/2
I':;a[ﬁ]zj\/'lexp(—— > |hg (1—e9n®)[2].

2 DLaZ n="N2
(B7)

(B6)

1 Ng/2
Pa[h]=N" exp< T2p0La? n:ZNS/Q |hqn<1—e'qnba>|2) ,
S

(B9)

which differs from the previous expression.

It is clear that this is a general problem of all discretiza-
tions in real space. In the lima—0, in fact, one recovers
from Eq. (B9) the correct expressiofB4).
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