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Interface dynamics from experimental data
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An algorithm is envisaged to extract the coupling parameters of the Kardar-Parisi-Zhang~KPZ! equation
from experimental data. The method hinges on the Fokker-Planck equation combined with a classical least-
square error procedure. It takes properly into account the fluctuations of surface height through a deterministic
equation for space correlations. We apply it to the~111!-dimensional KPZ equation and carefully compare its
results with those obtained by previous investigations. Unlike previous approaches, our method does not
require large sizes and is stable under a modification of sampling time of observations. Shortcomings associ-
ated with standard discretizations of the continuous KPZ equation are also pointed out and finally possible
future perspectives are analyzed.

PACS number~s!: 64.60.Ht, 05.40.2a, 05.70.Ln
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I. INTRODUCTION

Inverse techniques have a wide range of applicabi
ranging from geophysics to nonlinear time analysis and
tistics @1#. The common philosophy behind these method
the extraction of equations of motion starting from succ
sive experimental time series of some dynamical variable
addition to basic assumptions such as determinism. If a
sonably general form of the equations is guessed eithe
symmetry arguments or by general considerations,
‘‘true’’ parameters are then determined by minimizing a c
function quantifying the distance between experimental
servations and corresponding reconstructed quantities,
latter being implicitly dependent upon the paramete
Among such approaches, the least-squares method is
most popular one.

A typical system that can be treated using reconstruc
techniques is the case where anobservational noiseis super-
imposed onto a standarddeterministicevolution. In this case
the system is expected to evolve under the action of
deterministic system and stochasticity comes only from
measurement apparatus. The particular case where the
namics underlying the system is chaotic has also rece
considerable attention due to its widespread occurrenc
natural systems@2#, and the importance of treating the pre
ence of the noise with due care has already been empha
@3#.

The alternative possibility ofdynamical noiseoccurs
whenever the noise is a built-in component of the equati
of motion. This is a far more difficult problem since one h
to deal with stochastic rather than deterministic equatio
An important such case, which is widespread in nature, is
Langevin dynamics where variables evolve subject both
dissipative generalized forces and to a fluctuating part@4#. In
this last instance, the presence of dynamical noise can d
tically modify the dynamics and hence hampers the e
ciency of the usual reconstruction techniques based on d
ministic ideas@5#.

In our work, we focus on a particular class of Langev
dynamics that has its origin in a seminal paper on interf
PRE 621063-651X/2000/62~2!/1716~9!/$15.00
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dynamics@6# but has ever since displayed relations with
variety of physical systems, such as, for instance, bacte
colonial growth, immiscible fluids, directed polymers, an
superconductors@7#.

The Kardar-Parisi-Zhang~KPZ! equation@6# was intro-
duced as a coarse-grained mesoscopic description for
growth of a rough surface under the deposition of partic
driven by gravity. The crucial ingredient introduced in th
KPZ equation and not present in the corresponding lin
counterpart, namely, the Edward-Wilkinson~EW! equation
@8#, is a nonlinear term which takes into account the fact t
the growth is normal to the surface. The KPZ equation c
be mapped into various other models. A Cole-Hopf chan
of variables maps it into a directed polymer diffusion equ
tion subject to a random potential@9#, while the identification
of the local gradient with a velocity leads to the Burge
equation for a vorticity-free velocity field@10#. Furthermore,
it is believed that the KPZ equation has the same large-s
behavior as the Kuramoto-Sivashinsky equation in 111 di-
mensions@11#, while in higher dimensionality the situation i
much less clear@12#. Nonetheless, in spite of the gigant
effort devoted to the KPZ equation in the past decade
complete understanding of its properties is still lacking.

The aim of the present paper is to introduce an inve
approach to the KPZ equation. A previous attempt due
Lam and Sander@13# was based on the standard least-squa
~LS! reconstruction method. These authors used this
proach directly on numerically simulated experimental s
faces without a preventive test of the performance of
method itself. Lam and Shin@14# subsequently showed tha
the standard discretization used in@13# was not adequate. We
shall argue below that, even with the improvements given
@14#, the classical identification procedure devised in R
@13# is not properly suited for Langevin dynamics since it
based on deterministic equation ideas. By an explicit com
tation using the LS technique applied to a~111!-
dimensional KPZ equation, we shall review their method a
point out what we consider its main deficiencies.

We then go on to introduce a different approach based
the Fokker-Planck equation~FPE! associated with each
1716 ©2000 The American Physical Society
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PRE 62 1717INTERFACE DYNAMICS FROM EXPERIMENTAL DATA
Langevin equation@15,4#. The advantage of this viewpoint i
that one can constructdeterministicrelations among correla
tion functions which, however, still carry information regar
ing the fluctuating nature of the original quantities. Tho
equations can then be easily analyzed within a least-squ
framework as in the LS method.

The paper is organized as follows. In Sec. II, the KP
equation is briefly recalled along with its numerical re
space approximations in 111 dimensions, while the LS ap
proach is reviewed in Sec. III. Section IV contains the ba
equations of our modified method, which is then applied
Sec. V. Numerical results are then given in Sec. VI and so
concluding remarks are provided in Sec. VII. More techni
points are finally confined in the Appendixes. Appendix
shows why the least-square method fails for sufficien
large noise amplitudes and Appendix B presents some re
concerning renormalized interfaces and their correspond
renormalized equations.

II. INTERFACE DYNAMICS

We consider a one-dimensional line of total lengthL and
a surface of heighth(x,t) at positionx and timet. The con-
tinuum ~111!-dimensional KPZ equation then reads

] th~x,t !5c1n]x
2h~x,t !1

l

2
@]xh~x,t !#21h~x,t !, ~1!

whereh(x,t) is an uncorrelated white noise,

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~2!

The averagê & is taken on different realizations of th
noise. In Eqs.~1! and ~2!, c, n, l, andD are coupling pa-
rameters@c is often set to zero because of the invariance
Eq. ~1! under the rescalingh→h1ct]. For l50, Eq. ~1!
reduces to the Edward-Wilkinson equation@8#, which can be
solved exactly.

In writing Eq. ~1! either a regularization in the correlatio
given in Eq.~2! ~such as, for instance, a spatially correlat
noise! or the introduction of a minimal length scalea is
always tacitly assumed. In the latter case, one is then n
rally led to consider a discretization of the continuum eq
tion at a given cutoff length scalea. In that case,~a! the noise
term h(x,t) is discretized,

h i~ t !5AD

a
u i~ t !, ~3!

whereu i(t) is a random noise

^u i~ t !u j~ t8!&52d i , j d~ t2t8!, ~4!

with d i , j the Kronecker symbol; and~b! Eq. ~1! is written for
a discrete variablehi(t) ( i 51, . . . ,N5L/a) with periodic
boundary conditions

dhi

dt
5c1neff Fi

n@h#1
leff

2
Fi

l@h#1ADeffu i~ t !. ~5!

Here neff5n/a2, leff5l/a2, and Deff5D/a. Fi
n@h# and

Fi
l@h# are proper discretizations of the linear]x

2h and non-
e
res

l

c
n
e
l

y
lts
g

f

u-
-

linear (]xh)2 terms, respectively. We note that the exa
meaning of ‘‘proper discretization’’ has been the object
some investigation@16–19#.

In all practical applications, a further temporal discretiz
tion @15,20# is also performed on Eq.~5!:

hi~ t1dt !5hi~ t !1dtS c1neffFi
n@h~ t !#1

leff

2
Fi

l@h~ t !# D
1A2Deffdtr i , ~6!

wherer i is a Gaussian random generator of unit variance
dt the discretization time step.

In d5111 it is known that the steady state solutionP@h#
for the probability distribution of the heights in the KP
equation is identical to the EW stationary distribution due
the fluctuation-dissipation theorem@10#. It has been shown
@19,21# that the correct stationary discrete probabilit
namely,

P@h#5N 21expS 2
1

2

n

Da (
i 51

N

~hi2hi 11!2D , ~7!

where N 21 is a normalization factor, can be obtained b
taking

Fi
n@h#5hi 111hi 2122hi ~8!

and

Fi
l@h#5

1

3
@~hi 112hi !

21~hi 112hi !~hi2hi 21!

1~hi2hi 21!2#. ~9!

The standard choiceFi
l@h#5(1/4)(hi 112hi 21)2, on the

other hand, fails to reproduce Eq.~7! and suffers other prob
lems as well@18#. A necessary~albeit not sufficient! condi-
tion for identification with the continuum counterpart Eq.~1!
is clearly that the correct steady state~i.e., independent ofl)
is recovered. For this reason, we shall exploit for our iden
fication procedure as well as for the LS scheme Eqs.~8! and
~9! hereafter, instead of the standard choice that was use
@13#.

III. LEAST-SQUARES ERROR MODEL METHOD

Before introducing our method we first review the L
error method used in Ref.@13#. We consider experimenta
surfaces coarse grained at length scalea described by the
interface heightshi

obs(t) ( i 51, . . . ,N), which are sampled
M times, i.e., at discrete timest5tk5kDt (k51, . . . ,M
11). Note that the sampling timeDt is the time interval
between two experimental observations and it is clearly
ferent from the discretization timedt of Eq. ~6!. For surfaces
obtained by numerical simulationsDt is typically a multiple
of dt. We note that, in Ref.@13#, the authors usedDt equal to
dt which is a rather particular case.

For the sake of simplicity, we assume here that meas
ments are free from observational noise. It must be emp
sized that, in the presence of measurement noise, our me
performsa priori better then the LS scheme since it is bas
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1718 PRE 62ACHILLE GIACOMETTI AND MAURICE ROSSI
on spatial-averaged values, which are less affected by e
on local height measurements.

Our purpose is to determine the coefficientsc, n, l, andD
at the given length scalea in Eq. ~3!. Let us first neglect the
dynamical noise in Eq.~5!. We then obtain a standard iden
tification problem of the coupling parameters governing
deterministic nonlinear equation which can be cast in
compact form

dhi

dt
5 (

a51

p

maFi
a@h#, ~10!

where in the present casep53 and m15c, m25neff , m3

5leff , and Eqs.~8! and ~9! are used forFi
2@h# and Fi

3@h#
whereasFi

1@h#51.
Optimal parameters are then determined by minimizin

cost functionJ such as the sum-square difference

J5
1

NM (
k51

M

(
i 51

N

@hi
obs~ tk11!2hi

pred~ tk11!#2, ~11!

which quantifies the distance between experimental obse
tions hi

obs(tk) and equivalent reconstructed quantiti
hi

pred(tk). The latter quantities are computed from Eq.~10!
for given parameters and are thus generally implicit fu
tions of the parameters. However, if the sampling timeDt is
small enough, thenFi

a@h# are nearly constant between tw
measurements and the amplitudeshi

pred(tk11) can be related
to the parametersma by

hi
pred~ tk11!5hi

obs~ tk!1Dt (
a51

p

maFi
a@hobs~ tk!#. ~12!

In this case, the cost functionJ($m%) itself becomes explicit
and quadratic in the parameters. Optimal parameters can
be evaluated through a simple matrix inversion. Indeed,
extremal value ofJ is inferred from

]J
]ma

U
m*

50. ~13!

The solution for the optimal parameters$m* % is then given
by a matrix equation,

ma* 5 (
b51

p

Aab
21Bb , ~14!

where we have defined

Aab5
1

NM (
k51

M

(
i 51

N

Fi
aFi

b , ~15!

Ba5
1

NM (
k51

M

(
i 51

N S hi
obs~ tk11!2hi

obs~ tk!

Dt DFi
a , ~16!

and where functions Fi
a are clearly expressed a

h1
obs(tk), . . . ,hN

obs(tk).
This classical least-squares method is an easy and na

approach and it works fairly well in the absence of any noi
rs

a
e

a

a-

-

us
e

ral
.

In the presence of noise, however, it has its main drawb
in the fact that it approximates time derivatives by fin
differences. If the dynamics is governed by a determinis
equation and measurements are performed with a neglig
observational noise, this simply imposes the choice of a s
pling time much smaller than the characteristic or relaxat
time of the process.

Lam and Sander@13# assumed that if the sampling tim
Dt is small enough, the above method could be extende
a Langevin equation~i.e., with dynamical noise!. The ampli-
tude of the noise can then be inferred from Eq.~11! whenJ
is taken at the minimum values of the parameters, that is

D5
1

2Dt
aJ~$m* %!. ~17!

However, it has already been observed in dynamical syst
that even with pure measurement noise the above me
can cause large errors. This is expected to be the case
dynamical noise as well. Two main reasons for this can
advocated. First, ifDt is too large, the linear approximatio
~12! which explicitly relates the observed quantities brea
down. Because of the dynamical noise term, this happena
priori for shorter time intervals in a Langevin equation com
pared with its deterministic counterpart. Second, even in
favorable case in whichDt is small, such a method is effi
cient only if large sizes and small noise amplitudes are us
This is explained in Appendix A, where a simple zer
dimensional case is explicitly worked out with the method
Lam and Sander.

IV. STOCHASTIC APPROACH FOR MODEL
IDENTIFICATION

We now turn to our method, which is based on the sim
observation that all the information present in the Lange
equation~5! is also contained in the corresponding Fokke
Planck equation@15#:

] tP@h,t#5(
i 51

N

Deff

]2

]hi
2

P@h,t#2(
i 51

N
]

]hi
~Fi@h#P@h,t# !,

~18!

where

Fi@h#5c1neffFi
n@h#1

1

2
leffFi

l@h# ~19!

and @22#

P@h,t#5K )
i 51

N

d„hi2hi~ t !…L , ~20!

where the solutionhi(t) is associated to a particular nois
configurationu i(t).

In Eq. ~18! the second term on the right-hand side ch
acterizes the deterministic behavior of the system wher
the first term contains stochastics effects. We derive a
general equation involving the parametersc andl. Using Eq.
~18!, the time derivative of the ensemble average ofhi(t) can
easily be shown to be
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d^hi~ t !&
dt

5E DhFi@h#P@h,t#, ~21!

where Dh[) i 51
N dhi . If we denote by g(1)(t)

5(1/N)( i^hi(t)& the mean height at timet averaged over
the noise, its time derivative can be written after some sim
algebra as

dg(1)~ t !

dt
5c1

leff

6
@2g0

(2)~ t !1g1
(2)~ t !#, ~22!

where we have defined

gl
2~ t !5

1

N (
i 51

N

^dhi~ t !dhi 1 l~ t !& ~23!

in the variablesdhi5hi2hi 11. Note that there are onlyN
21 independentdhi variables due to periodic boundary co
ditions and to the fact that( i 51

N dhi50.
The above result prompts a convenient change of v

ables fromh1 , . . . ,hN to dh1 , . . . ,dhN21 ,h̄[1/N( i 51
N hi ,

followed by an integration overh̄. Physically, this is related
to the fact that our system is infinitely degenerate with
spect to the average height. Note that the stationary prob
ity Eq. ~7! is now Gaussian and well defined in the ne
variables dh1 , . . . ,dhN21. The corresponding probability
P̃@dh# is the solution of a modified FPE:

] t P̃@dh,t#52Deff (
i 51

N21
]2

]dhi
2
P̃@dh,t#

2 (
i 51

N21
]

]dhi
~Gi@dh# P̃@dh,t# !

22Deff (
i 52

N21
]2

]dhi]dhi 21
P̃@dh,t#, ~24!

where we have defined

Gi5Fi2Fi 115neffGi
n1

1

2
leffGi

l , ~25!

with

Gi
n5dhi 111dhi 2122dhi ~26!

and

Gi
l5

1

3
@dhi 21

2 2dhi 11
2 2dhi~dhi 112dhi 21!#. ~27!

We are now in a position to derive our second basic res
Integrating Eq.~25! over all variables but~say! dhj , one

gets, for the single variable probability

p~dhj !5E Ddhj P̃@dh,t#, ~28!

where the shorthand notationDdhj5) iÞ j 51
N21 ddhi was again

exploited, the following equation:
le

i-

-
il-

t.

] tp~dhj ,t !52Deff

]2

]dhj
2

p~dhj ,t !2
]

]dhj
p~dhj ,t !,

~29!

where the nonlocal termp(dhj ,t) is defined as

p~dhj ,t !5E DdhjGj@dh# P̃@dh,t#. ~30!

The last step is to introduce the Fourier transform
p(dhj ,t), which can be reckoned as a generating funct
for all moments of the distribution. Specifically, on definin

pĵ~q,t !5E
2`

1`

ddhj eiqdhjp~dhj ,t !, ~31!

we find a simple equation for the averagep̂(q,t) over all
sites ofpĵ (q,t):

] t p̂~q,t !522Deffq
2p̂~q,t !2 iqp̂~q,t !, ~32!

in which p̂(q,t) is the Fourier transform ofp(dhj ,t) aver-
aged over all sites. One can then expand Eq.~32! in powers
of q and obtain an infinite hierarchy~closure problem! in the
correlation functions. The first two nontrivial orders@O(q2)
andO(q3)] are

dg0
(2)~ t !

dt
54neff@g1

(2)~ t !2g0
(2)~ t !#14Deff ~33!

and

dg00
(3)~ t !

dt
523neff@g11

(3)~ t !1g01
(3)~ t !22g00

(3)~ t !#

1
1

2
leff@g001

(4)~ t !2g111
(4)~ t !#, ~34!

where we have defined the following higher order correlat
functions:

glm
(3)~ t !5

1

N (
i 51

N

^dhi~ t !dhi 1 l~ t !dhi 1m~ t !&, ~35!

glmn
(4) ~ t !5

1

N (
i 51

N

^dhi~ t !dhi 1 l~ t !dhi 1m~ t !dhi 1n~ t !&.

~36!

It is worth mentioning thatl does not explicitly appear in
Eq. ~33!. As one can explicitly check, this is a feature ass
ciated with the particular discretization Eq.~9! and it would
not have been the case had we used the standard discre
tion for Fi

l@h#. This is clearly related, in turn, to the fact tha
the steady state probability distribution Eq.~7! is indepen-
dent ofl. We also note that in the~111!-dimensional case
we are considering, the explicit steady state solution of
~32! is known, and depends only on a single parameterD/n.
As a consequence, the steady state version of Eq.~32! cannot
be used here to identifyn andD. In the ~211!-dimensional
case, where such a peculiar feature is not present, the sta
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1720 PRE 62ACHILLE GIACOMETTI AND MAURICE ROSSI
ary solution depends onl as well and parameter identifica
tion can exploit the steady state analog equation.

V. PARAMETER IDENTIFICATION

Our aim is to implement an identification procedu
which could be exploited in real experiments. For this re
son, we assume that the experimental surface is constit
by a finite number of sitesN with lattice spacinga ~corre-
sponding to a sizeL5Na), and it is measured during a finit
time Tobs every sampling timeDt. Again, Dt is a priori
different from the discretization timedt when the data are
produced numerically~note that in real experimentsdt is not
even defined!. We shall test the robustness and efficiency
the scheme with respect to the sizeL and sampling timeDt.

Identification methods are often based on minimizing
cost function defined through dynamical constraints. This
clearly the case of the least-squares method as explaine
Sec. III. Here we derive dynamical constraints using E
~22! and ~33!, which contain information from the origina
Langevin equation, including mean values and fluctuati
around mean values. The present identification is thus ba
on deterministicequations. This constitutes a crucial diffe
ence with respect to the previous reconstruction method@13#
directly based onstochasticequations. Another importan
feature is that the observed quantities we use in our rec
struction scheme are dealing with averaged site valu
Hence the fluctuations of all these terms, which derive fr
stochastic quantities, arereducedtypically by a factor 1/AN,
and self-averaging is expected to be more effective.

Let us derive the constraints we use. First, the total ob
vation time Tobs is divided into q equal slices
@T1 ,T2#, . . . ,@Tq ,Tq11# with DT5Tj 112Tj . Let us inte-
grate Eqs.~22! and ~33! on each slice@Tj ,Tj 11#:

Dg(1)

Tj 112Tj
5c1

leff

6

1

Tj 112Tj
E

Tj

Tj 11
dt@2g0

(2)~ t !1g1
(2)~ t !#,

~37!

Dg0
(2)

Tj 112Tj
54neff

1

Tj 112Tj
E

Tj

Tj 11
dt@g1

(2)~ t !2g0
(2)~ t !#

14Deff . ~38!

If the functions and integrals in Eqs.~37! and~38! are com-
puted using experimental data, these discrete equations
vide 2q relations between the parameters to identify. Fr
these constraints, two cost functions are built in a way
ready described in Sec. III withp52. The corresponding 2
32 equations then yieldc andl from one cost function and
n andD from the other.

We now explain how the functions and integrals in Eq
~37! and ~38! are obtained experimentally. Starting with th
sameinitial surface, e.g., a flat surface, we will grow th
surfaceR times. Because of the stochastic nature of the p
nomenon, this producesR different observations or realiza
tions of the same process. Such a procedure, which ca
performed very easily in real experiments, allows the co
putation, at sampling timest5tk5kDt (k51, . . . ,M11),
of @g(1)#expt, @g0

(2)#expt, and@g1
(2)#expt. Indeed, these quanti

ties are the averages overR different realizations of the spa
-
ed

f

a
is

in
.

s
ed

n-
s.

r-

ro-

l-

.

e-

be
-

tial average height and correlations of the first neighbo
The numberR of realizations need not be large: if the tot
numberN of sites is sufficiently large, the experimental va
ues are rather close to the corresponding theoretical pre
tions g(1)(t), g0

(2)(t), and g1
(2)(t). From these functions

sampled everyt5tk5kDt, the integrals in Eqs.~37! and~38!
can be efficiently evaluated for small sampling timeDt. In
this case, the smooth functions@g(1)#expt, @g0

(2)#expt, and
@g1

(2)#expt can be approximated on the whole time interv
@T1 ,Tq11# by a standard curve fitting algorithm which give
as a by-product the time integrals. This method does imp
a constraint on the sampling timeDt. However, this con-
straint is substantially weaker with respect to that impos
by the LS method, as we will show below. This is a cons
erable advantage of our procedure.

Two remarks are in order here. First one expects the re
to be independent of the number of slicesq provided thatq
satisfies the following two constraints. On the one handq
should be greater than 2~since two parameters are identifie
per cost function! and on the other hand it should be le
than M5Tobs/Dt so thatDT cannot be less than the sam
pling timeDt. Second, the identification ofn andD could be
achieved by using Eq.~32! rather than Eq.~33!. We shall see
that in our approach the two equations yield virtually iden
cal results.

VI. RESULTS

In order to test the potentiality of the different identific
tion methods, we produce experimental data by simulat
Eq. ~5! with a standard Euler time integration algorithm wi
time stepdt50.01, lattice spacinga51, and parametersn
5D51 andl53. These are the same values used in R
@14#. The time step is expected to be sufficiently small
cause no instability problems and the nonlinear terml is big
enough to be well inside the KPZ phase. We find it intere
ing to repeat each calculation a few times~typically five! to
give an estimate of the error bars to be associated with e
parameter value~this was missing in previous work!.

A. LS method

Let us compute the parameters using the original
method with the spatial and temporal discretization of E
~5! and ~6!. We exploit the same trick used in Ref.@14# in
which a KPZ surface of size 2L is obtained by a magnifica
tion of a fully relaxed surface of sizeL where the height is
rescaled by a factor 2a (a50.5) and linearly interpolated
The surface obtained is then relaxed to stationarity before
next magnification is attempted. However, unlike Ref.@14#
where a single surface of sizeL532 768 was computed, we
considerL5512, 1024, 2048, and 4096 and linearly extrap
late the results to the limitL→`. The calculation is repeate
for increasing values ofs5Dt/dt in order to display the
crucial weakness of the method as explained before. Figu
depicts the results for the parametern at finite L. Similar
trends are present forl and D. The extrapolated values a
L→` are reported in Table I. The gradual decrease in
precision of the reconstructed parameters is apparent a
shows the loss of accuracy of the LS method asDt increases,
as previously noted.
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We also considered the LS method when the rec
structed quantities are computed at time intervalsDT that are
multiples of the sampling timeDt. In fact, this test was also
carried out by the authors of Ref.@14# ~in their notationt
5DT andDt5dt) and it will constitute a further source o
comparison with our alternative stochastic method~see be-
low!. Even in this case there is a decrease in the performa
of the procedure as the ratior 5DT/Dt increases, consisten
with the results of Ref.@14#. The corresponding extrapolate
values are reported in Table II.

B. Stochastic approach

For a more convenient comparison with the LS meth
we use the same sizes and statistics~five different configu-
rations for each size!. Our calculations are carried out in th
transient rather than in thesteadystate and are therefor

FIG. 1. The coupling parametern for increasing lattice sizesL
5512, 1024, 2048, 4096, in the original steady state LS meth
All quantities are in dimensionless form. Error bars are of the or
of the symbol sizes and are consequently not displayed. Diffe
curves refer to increasing values of the ratios5Dt/dt. The cross
(3) indicates the exact value of the parametern51.

TABLE I. Extrapolated values of coupling parametersn(`),
l(`), andD(`) as a function ofs5Dt/dt ~see text! as computed
from the original LS method~at steady state!.

Dt/dt n(`) l(`) D(`)

1 0.99960.003 2.98060.005 1.00060.001
5 0.19460.004 0.59560.015 0.20060.001

10 0.10360.004 0.31960.008 0.10060.001
20 0.04960.002 0.13960.004 0.05060.001
-

ce

,

much less time consuming. Again the results are obtained
L5512, 1024, 2048, and 4096 and linearly extrapolated
L→`. For a comparison with the previous calculation, t
outcomes for the parametern at different sizesL are plotted
in Fig. 2 for increasing values of the ratios5Dt/dt, and the
corresponding extrapolated values are reported in Table
One can see that the parameter values are rather insen
to the changing the ratios5Dt/dt, as expected. Next we
checked the performance of our method with respect to
crease of the ratior 5DT/Dt. This is reported in Table IV.
As expected, our method outperforms the LS one in all s
ations.

Since the LS method could in principle be carried out
transient rather than in steady state conditions, one m
wonder how it would perform in this case. To this end w
recomputed the parameters using the LS method under td.
r

nt

TABLE II. Extrapolated values of coupling parametersn(`),
l(`), andD(`) as a function ofr 5DT/Dt ~see text! as computed
from the original LS method~at steady state!.

DT/Dt n(`) l(`) D(`)

1 0.99960.003 2.98060.005 1.00060.001
5 0.99660.002 2.81760.004 0.92860.001

10 0.91760.002 2.62760.006 0.85360.001
20 0.85560.002 2.30860.006 0.75760.001
50 0.65060.001 1.55860.006 0.65360.002

FIG. 2. The coupling parametern for increasing lattice sizesL
5512, 1024, 2048, 4096, as obtained from our reconstruc
method. Error bars are of the order of the symbol sizes and
consequently not displayed. Different curves refer to increasing
ues of the ratios5Dt/dt. The cross (3) indicates the exact value
of the parametern51.



o

th

e
am
e
n

ou
ie

po
l
e

on
im

lues
lso

tly
ace
ze
he

ou-
ting
nap-
ua-

o
ch
t
an-
tage,
to

er
n-

fact
ling
he
tu-
ter
m.
e an
is

ns.
or-
er-
ex-
we

ed
ap-
un-
ve
rier-
re-

n.

ge
l

ple

ce of

1722 PRE 62ACHILLE GIACOMETTI AND MAURICE ROSSI
conditions and found that the predicted values are far
with respect to the exact ones. For instance, forL54096 a
typical run yieldsn;0.36, l;0.68, andD;0.005, to be
compared with a typical result obtained with our methodn
;0.99, l;2.98, andD;1.01.

As a final cross-check of our method, we recomputed
parameters in the same situation as before but using Eq.~32!
rather than Eq.~33! to extractn and D, and found nearly
identical values.

C. Coarse graining and KPZ real discretization

The application of this method to experimental surfac
assumes that the system is described by a KPZ-like dyn
ics. In this case, besides being able to address the issu
whether or not they belong to the KPZ universality class, o
would be able to provide a numerical estimates of the c
pling parameters, which are usually overlooked in stud
focusing only on the universality class.

Following Lam and Sander@13#, we produce an interface
based on the KPZ discretized model Eq.~5!, which is then
smoothed by introducing the~discrete! Fourier transform of
the heights

ĥqn
~ t !5a(

i 51

N

e2 iqnxihi~ t !. ~39!

A coarse-graining surface at levelas5ba can then be
achieved by simplying setting to zero all wavelength com
nentsĥqn

(t) with q>Ns5L/as and transforming back to rea
space. The smoothed surface obtained is then be assum
be governed by a KPZ equation~renormalizability property!.
This new KPZ dynamics can then be reconstructed al
lines similar to those described above before a further t
step is carried out on the original surface.

With b52, DT/Dt51, and sizes up toL58192 averaged
over five configurations as before, we findn51.0960.04,

TABLE III. Extrapolated values of coupling parametersn(`),
l(`), andD(`) as a function ofs5Dt/dt as computed from our
stochastic approach in the transient state.

Dt/dt n(`) l(`) D(`)

1 1.00960.002 3.04760.016 1.02660.001
5 1.00860.007 3.01560.006 1.00360.007

10 1.03560.011 2.99360.010 1.01860.011
20 0.99760.020 3.00160.005 0.97860.010

TABLE IV. Extrapolated values of coupling parametersn(`),
l(`), andD(`) as a function ofr 5DT/Dt as computed from our
stochastic approach in the transient state.

DT/Dt n(`) l(`) D(`)

1 1.00960.002 3.04760.016 1.02660.001
5 1.00360.003 3.00560.010 1.05760.003

10 1.00360.001 3.03060.007 1.02360.001
20 0.99860.002 3.01460.009 1.01660.001
50 0.99160.003 3.01760.006 1.01060.003
ff

e

s
-
of

e
-
s

-

d to

g
e

l53.2760.05, andD50.8860.03. Higher values ofb re-
sult in poorer and poorer agreement with the expected va
even with larger lattice sizes. The same feature is a
present in the original LS procedure as we explici
checked. In fact, this is a general deficiency of the real sp
discretization as explained in Appendix B: the finite si
difference has lost some renormalizability property of t
original KPZ continuum equation.

VII. CONCLUSIONS

In this paper, we discuss a method for extracting the c
pling parameters from a nonlinear Langevin equation star
from experimental surfaces representing successive s
shots of the system. We apply this scheme to the KPZ eq
tion in 111 dimensions~although it could be extended t
any dimensions! and compare it with the previous approa
of Ref. @13#, finding the following differences. First of all i
does not require large sizes and it is well suited for a tr
sient state. This is expected to be a considerable advan
notably in numerical work, since the typical time required
reach a steady state increases asLz wherez is the dynamical
exponent@3/2 in the~111!-dimensional KPZ case#. We have
explicitly shown how the LS method, which works rath
well in the aforementioned conditions, fails to provide se
sible answers otherwise. Most important, however, is the
that our approach is stable under changes of the samp
time, unlike the LS method, which is not. We stress t
importance of this feature since in typical experimental si
ations the sampling time is an externally tuned parame
that has nothing to do with the evolution time of the syste
We have discussed the reasons why this is so and provid
intuitive heuristic argument showing why the LS scheme
not expected to work under these more realistic conditio
Finally, we implemented a coarse-graining procedure in
der to be able to apply our method to experimentally gen
ated profiles. We showed that the agreement with the
pected values is much poorer in the present case, and
further argued thatany real space based approach is doom
to run into this problem, the reason being that these
proaches do not have a correct renormalization behavior
der coarse graining, as explained in Appendix B. We ha
recently devised an alternative approach based on a Fou
based scheme, which avoids discretization problems. The
sults of this will be the subject of a forthcoming publicatio
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APPENDIX A: A SIMPLE SOLVABLE EXAMPLE

This Appendix shows, on a simple and solvable exam
which is a zero-dimensional analog of Eq.~1!, that the
method of least squares can be hampered by the presen
dynamical noise. Let us assume that the scalar variableX(t)
is governed by the following Langevin equation:
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dX

dt
5B~X!1mG~X!1h~ t !, ~A1!

whereB andG are prescribed functions, andh(t) is an un-
correlated white noise

^h~ t !h~ t8!&52Dd~ t2t8!. ~A2!

For simplicity, we assume that~a! measurement noise is neg
ligible, ~b! the observed time seriesXobs(tk) with tk5kDt
(k51, . . . ,M11) has been produced by the dynamical s
tem ~A1! with the valuem50. We ask whether the leas
squares method is capable of identifying the correct coup
parameterm50.

On the one hand, the least-squares method first assu
that the data are produced by the deterministic counterpa
Eq. ~A1! with an unkown parameterm. In discrete times, this
yields a ‘‘predicted’’ value given by

Xpred~ tk11!5Xobs~ tk!1Dt@B„Xobs~ tk!…1mG„Xobs~ tk!…#.

~A3!

On the other hand, the ‘‘observed’’ value is given, if th
sampling time is small enough, by the discrete time coun
part of Eq.~A1! with m50:

Xobs~ tk11!5Xobs~ tk!1DtB„Xobs~ tk!…1r ~ tk!A2DDt,

~A4!

wherer (tk) is a Gaussian random generator of unit varian
Using both experimental observationsXobs(tk) and recon-

structed quantitiesXpred(tk), a cost function can be con
structed:

J5
1

M (
k51

M

@Xobs~ tk11!2Xpred~ tk11!#2. ~A5!

Using Eqs.~A3! and~A4!, the cost function is readily rewrit
ten as

J5
1

M (
k51

M

@DtmG„Xobs~ tk!…2r ~ tk!A2DDt#2. ~A6!

The minimum value ofJ then satisfies the extremality con
dition

]J
]m U

m*
50, ~A7!

which provides the value

m* 5A2D

Dt

~1/M !(
k51

M

r ~ tk!G„Xobs~ tk!…

~1/M !(
k51

M

G2
„Xobs~ tk!…

. ~A8!

Let us estimate the two sums appearing in Eq.~A8!. Be-
cause of self-averaging, the denominator can clearly be
written as
-

g

es
of

r-

.

e-

1

M (
k51

M

G2
„Xobs~ tk!…'^G2&, ~A9!

the average being over the noiseh. The second sum can b
separated into two contributions,

1

M (
k51

M

@r ~ tk!G„Xobs~ tk!…#

5
1

M (
k51

M

r ~ tk!@G„Xobs~ tk!…2^G&#1
^G&
M (

k51

M

r ~ tk!,

~A10!

where using the central limit theorem~CLT! @4# we have that

^G&
M (

k51

M

r ~ tk!'
^G&

AM
r 1 , ~A11!

wherer 1 is a random variable of unit variance. In Eq.~A10!,
each term of the first sum of the right-hand side~rhs! is a
random variable which is a product of two independent r
dom variables of zero mean and variance, respectively e
to 1 ands5^G2&2^G&2. A similar argument based on th
CLT applies to the evaluation of the first term of the r
since it is again a sum ofM random variables with zero
average, which implies that

1

M (
k51

M

r ~ tk!@G„Xobs~ tk!…2^G&#'
As

AM
r 2 , ~A12!

wherer 2 is a random variable of unit variance. Instead of t
true value one then finds

m* '
A2D

AMDt

max~As,^G&!

^G2&
. ~A13!

With nonvanishing amplitudesD, the noise hence causes e
rors for smallDt unless large statistics are considered.

APPENDIX B: NONRENORMALIZABILITY
OF REAL SPACE DISCRETIZATIONS

Let us consider a one-dimensional surface defined o
lattice of lengthL5Na ~a being the lattice spacing andN
being the total number of sites!, which is identified by
h1 , . . . ,hN at positionsx15a, . . . ,xN5Na and has peri-
odic boundary conditions. If we assume a KPZ dynami
then the equation of motion is given by Eq.~5! and its sta-
tionary state by Eq.~7!. Let us introduce the~discrete! Fou-
rier transformĥq so that

hi~ t !5
1

L (
n52N/2

N/2

eiqnxi ĥqn
~ t !, ~B1!

and conversely

ĥqn
~ t !5a(

i 51

N

e2 iqnxihi~ t !. ~B2!
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By using the relation

(
i 51

N

ei (qn2qm)xi5Ndn,2m , ~B3!

it is easy to show that the correct corresponding relation
Eq. ~7! for the stationary distribution is

Pâ@ ĥ#5N 21 expS 2
1

2

n

DL (
n52N/2

N/2

qn
2uĥqn

u2D . ~B4!

In Eq. ~B4! the continuum limita→0 is simply achieved by
letting N→`.

We now recall that the proper variables to be used in
context are thedhi5hi2hi 11, whose Fourier transform
dĥqn

are related to the Fourier transformĥqn
of the heights

by

dĥqn
5ĥqn

~12eiqna!. ~B5!

We can exploit the periodic boundary conditions to exte
the N21 sites toN ~bearing in mind, however, that onlyN
21 are independent! and use the the fact that

1

a (
i 51

N

dhi
25

1

La2 (
n52N/2

N/2

udĥqn
u2, ~B6!

to rewrite the probability~B4! in the alternative form

Pâ@ ĥ#5N 21 expS 2
1

2

n

DLa2 (
n52N/2

N/2

uĥqn
„12eiqna

…u2D .

~B7!
m-

s

pl

e,

r,

e

f

is

d

In the continuum limita→0 one can explicitly check tha
Eq. ~B7! is equivalent to Eq.~B4! by expanding the term
eiqna in powers ofa and keeping the lowest nonvanishin
orderO(a). Nevertheless, Eq.~B7! leads to problems when
one tries to coarse-grain the surface. Indeed, suppose we
perform a smoothing of the lattice of a factorb to obtain a
new lattice constantas5ba and a decreased number of sit
Ns5N/b. This amounts to setting to zero all modes fromNs
to N and thus thecorrect corresponding stationary distribu
tion is, according to Eq.~B7!,

Pas
ˆ @ ĥ#5N s

21 expS 2
1

2

n

DLa2 (
n52Ns/2

Ns/2

uĥqn
~12eiqna!u2D .

~B8!

On the other hand, had we started from the ‘‘smoothe
lattice and constructed the differencesdhi

s5hi
s2hi 1b

s of the
coarse-grained heights, we would have found

Pas
ˆ @ ĥ#5N s

21 expS 2
1

2

n

DLas
2 (

n52Ns/2

Ns/2

uĥqn
~12eiqnba!u2D ,

~B9!

which differs from the previous expression.
It is clear that this is a general problem of all discretiz

tions in real space. In the limita→0, in fact, one recovers
from Eq. ~B9! the correct expression~B4!.
A.

e

@1# A. S. Weigend and N. A. Gershenfeld,Time Series Prediction
~Addison-Wesley, Reading, MA, 1994!.

@2# H. D. Abarbanel, R. Brown, J. J. Sidorowitch, and L. S. Tsi
ring, Rev. Mod. Phys.6, 1331~1993!.

@3# E. J. Kostelich and T. Schreiber, Phys. Rev. E48, 1752~1993!.
@4# See, e.g., C. W. GardinerHandbook of Stochastic Method,

2nd ed.~Springer-Verlag, Berlin, 1990!; N. G. van Kampen
Stochastic Processes in Physics and Chemistry~North-
Holland, Amsterdam, 1992!.

@5# L. Battiston and M. Rossi, Int. J. Bifurcation Chaos and Ap
Sci. Eng.5, 310 ~2000!.

@6# M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.56,
889 ~1986!.

@7# For recent reviews, see e.g., J. Krug, Adv. Phys.46, 139
~1997!; A. L. Barabasi and H. E. Stanley,Fractal Concepts in
Surface Growth~Cambridge University Press, Cambridg
1995!; T. Halpin-Haley and Y. C. Zhang, Phys. Rep.254, 215
~1995!; M. Marsili, A. Maritan, F. Toigo, and J. R. Banava
Rev. Mod. Phys.68, 963 ~1996!; P. Meakin, Phys. Rep.235,
131 ~1993!.

@8# S. F. Edward and D. R. Wilkinson, Proc. R. Soc. London, S
A 381, 17 ~1982!.

@9# D. A. Huse and C. Henley, Phys. Rev. Lett.54, 2708~1985!.
.

r.

@10# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A16,
732 ~1977!.

@11# V. Yakhot, Phys. Rev. A24, 642 ~1981!.
@12# B. Bogosian, C. C. Chow, and T. Hwa, Phys. Rev. Lett.83,

5262 ~1999!.
@13# C. Lam and L. M. Sander, Phys. Rev. Lett.71, 561 ~1993!.
@14# C. Lam and F. G. Shin, Phys. Rev. E58, 5592~1998!.
@15# H. Risken, The Fokker-Planck Equation~Springer-Verlag,

Berlin, 1989!.
@16# M. Beccaria and G. Curci, Phys. Rev. E50, 4560~1994!.
@17# T. J. Newman and M. R. Swift, Phys. Rev. Lett.79, 2261

~1997!.
@18# T. J. Newman and A. J. Bray, J. Phys. A29, 7917~1996!.
@19# C. Lam and F. G. Shin, Phys. Rev. E57, 6506~1998!.
@20# R. Mannella, inNoise in Nonlinear Dynamical Systems, edited

by F. Moss and P. V. E. McClintock~Cambridge University
Press, Cambridge,England, 1989!, Vol. 3.

@21# A correct discretization was also previously obtained by
Maritan ~private communication!.

@22# See, e.g., N. GoldenfeldLectures on Phase Transitions and th
Renormalization Group ~Addison-Wesley, Reading, MA,
1993!, p. 226.


